Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2023 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-36945408

RESUMO

All tissue-based gene expression studies are impacted by biological and technical sources of variation. Numerous methods are used to normalize and batch correct these datasets. A more accurate understanding of all causes of variation could further optimize these approaches. We used 17,282 samples from 49 tissues in the Genotype Tissue Expression (GTEx) dataset (v8) to investigate patterns and causes of expression variation. Transcript expression was normalized to Z-scores and only the most variable 2% of transcripts were evaluated and clustered based on co-expression patterns. Clustered gene sets were solved to different biological or technical causes related to metadata elements and histologic images. We identified 522 variable transcript clusters (median 11 per tissue) across the samples. Of these, 64% were confidently explained, 15% were likely explained, 7% were low confidence explanations and 14% had no clear cause. Common causes included sex, sequencing contamination, immunoglobulin diversity, and compositional tissue differences. Less common biological causes included death interval (Hardy score), muscle atrophy, diabetes status, and menopause. Technical causes included brain pH and harvesting differences. Many of the causes of variation in bulk tissue expression were identifiable in the Tabula Sapiens dataset of single cell expression. This is the largest exploration of the underlying sources of tissue expression variation. It uncovered expected and unexpected causes of variable gene expression. These identified sources of variation will inform which metadata to acquire with tissue harvesting and can be used to improve normalization, batch correction, and analysis of both bulk and single cell RNA-seq data.

2.
Microbiol Resour Announc ; 10(16)2021 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-33888509

RESUMO

We present the genome sequence of a bacterial strain isolated from park25 mutants of Drosophila melanogaster as part of efforts to better understand the microbial communities in D. melanogaster We isolated and sequenced a Lactiplantibacillus plantarum strain. We present a preliminary comparative analysis with a closely related strain.

3.
Annu Rev Genomics Hum Genet ; 22: 285-307, 2021 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-33900788

RESUMO

Clinical genetic variant classification science is a growing subspecialty of clinical genetics and genomics. The field's continued improvement is essential for the success of precision medicine in both germline (hereditary) and somatic (oncology) contexts. This review focuses on variant classification for DNA next-generation sequencing tests. We first summarize current limitations in variant discovery and definition, and then describe the current five- and four-tier classification systems outlined in dominant standards and guideline publications for germline and somatic tests, respectively. We then discuss measures of variant classification discordance and the field's bias for positive results, as well as considerations for panel size and population screening in the context of estimates of positive predictive value thatincorporate estimated variant classification imperfections. Finally, we share opinions on the current state of variant classification from some of the authors of the most widely used standards and guideline publications and from other domain experts.


Assuntos
Testes Genéticos , Sequenciamento de Nucleotídeos em Larga Escala , Genômica , Humanos , Medicina de Precisão
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...